Transcript and protein profiling identifies signaling, growth arrest, apoptosis, and NF-κB survival signatures following GNRH receptor activation
نویسندگان
چکیده
GNRH significantly inhibits proliferation of a proportion of cancer cell lines by activating GNRH receptor (GNRHR)-G protein signaling. Therefore, manipulation of GNRHR signaling may have an under-utilized role in treating certain breast and ovarian cancers. However, the precise signaling pathways necessary for the effect and the features of cellular responses remain poorly defined. We used transcriptomic and proteomic profiling approaches to characterize the effects of GNRHR activation in sensitive cells (HEK293-GNRHR, SCL60) in vitro and in vivo, compared to unresponsive HEK293. Analyses of gene expression demonstrated a dynamic response to the GNRH superagonist Triptorelin. Early and mid-phase changes (0.5-1.0 h) comprised mainly transcription factors. Later changes (8-24 h) included a GNRH target gene, CGA, and up- or downregulation of transcripts encoding signaling and cell division machinery. Pathway analysis identified altered MAPK and cell cycle pathways, consistent with occurrence of G(2)/M arrest and apoptosis. Nuclear factor kappa B (NF-κB) pathway gene transcripts were differentially expressed between control and Triptorelin-treated SCL60 cultures. Reverse-phase protein and phospho-proteomic array analyses profiled responses in cultured cells and SCL60 xenografts in vivo during Triptorelin anti-proliferation. Increased phosphorylated NF-κB (p65) occurred in SCL60 in vitro, and p-NF-κB and IκBε were higher in treated xenografts than controls after 4 days Triptorelin. NF-κB inhibition enhanced the anti-proliferative effect of Triptorelin in SCL60 cultures. This study reveals details of pathways interacting with intense GNRHR signaling, identifies potential anti-proliferative target genes, and implicates the NF-κB survival pathway as a node for enhancing GNRH agonist-induced anti-proliferation.
منابع مشابه
Transcript and protein profiling identifies signaling, growth arrest, apoptosis, and NF-kB survival signatures following GNRH receptor activation
GNRH significantly inhibits proliferation of a proportion of cancer cell lines by activating GNRH receptor (GNRHR)-G protein signaling. Therefore, manipulation of GNRHR signaling may have an under-utilized role in treating certain breast and ovarian cancers. However, the precise signaling pathways necessary for the effect and the features of cellular responses remain poorly defined. We used tra...
متن کاملVGB3 Induces Apoptosis by Inhibiting Phosphorylation of NF-κB p65 at Serine 536 in the Human Umbilical Vein Endothelial Cells
Background and objectives: Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) inhibition results in an increase in apoptosis. It has been demonstrated that NF-κB subunit p65 phosphorylation at the IκB kinase phosphorylation site serine 536 (Ser536) is essential for the NF-κB nuclear translocation and activation. Therefore, NF-κB can be downregulated by suppressing its phosph...
متن کاملDistinct Motifs in the Intracellular Domain of Human CD30 Differentially Activate Canonical and Alternative Transcription Factor NF-κB Signaling
The TNF-receptor superfamily member CD30 is expressed on normal and malignant lymphocytes, including anaplastic large cell lymphoma (ALCL) cells. CD30 transmits multiple effects, including activation of NF-κB signaling, cell proliferation, growth arrest and apoptosis. How CD30 generates these pleiotropic effects is currently unknown. Herein we describe ALCL cells expressing truncated forms of t...
متن کاملActivation of Wnt signaling reduces high-glucose mediated damages on skin fibroblast cells
Objective(s): High-glucose (HG) stress, a mimic of diabetes mellitus (DM) in culture cells, alters expression of a large number of genes including Wnt and NF-κB signaling-related genes; however, the role of Wnt signaling during HG-mediated fibroblast damage and the relationship between Wnt and NF-κB signaling have not been understood. In this study, we aimed to investigate the ffects of Wnt sig...
متن کاملOncrasin targets the JNK-NF-κB axis to sensitize glioma cells to TNFα-induced apoptosis.
Resistance of glioblastoma multiforme (GBM) to tumor necrosis factor (TNF) α-induced apoptosis have been attributed to increased nuclear factor-kappaB (NF-κB) activation. As we have previously reported that certain anticancer chemotherapeutics can sensitize glioma cells to TNFα-induced apoptosis by abrogating NF-κB activation, we investigated the potential of oncrasin in sensitizing glioma cell...
متن کامل